
SimpleConcepts: Support for Constraints on Generic
Types in C++

Reed Milewicz
University of Alabama at Birmingham

Birmingham, AL 35294

rmmilewi@cis.uab.edu

Marjan Mernik
University of Maribor, Slovenia

marjan.mernik@uni-mb.si

Peter Pirkelbauer
University of Alabama at Birmingham

Birmingham, AL 35294

pirkelbauer@uab.edu

Abstract—Generic programming plays an essential role in
C++ software through the use of templates. However, both the
creation and use of template libraries is hindered by the fact that
the language does not allow programmers to specify constraints
on generic types. To date, no proposal to update the language to
provide concepts has survived the committee process. Until that
time comes, as a form of early support, this paper introduces
SimpleConcepts, an extension to C++11 that provides support
for concepts, sets of constraints on generic types. SimpleConcepts
features are parsed according to an island grammar and source-
to-source translation is used to lower concepts to pure C++11
code.

Keywords—Generic Programming, C++ Templates, C++ Con-
cepts

I. INTRODUCTION

GENERIC programming is made possible in C++ through
the use of templates [1]. Templates are language con-

structs that operate with generic types and that are instantiated
as needed during compile-time [2]. Templates are ubiquitous in
many C++ libraries and systems, most notably the Standard
Template Library (STL), which provides generic implemen-
tations of commonly used containers and related algorithms.
Essential to the STL are concepts, which are sets of constraints
on types [3]. A type is called a model of a concept if
that type satisfies all of its requirements, and templates can
impose these concepts on their arguments; this is done to
ensure type safety. For example, to be able to sort a list,
its elements must support the == and < operators, and these
requirements are expressed by the concepts EqualityCompa-
rable and LessThanComparable. If the concepts associated
with a template class or function are not satisfied, then the
instantiation of that template code will fail, and a compile-
time error will result. It is important to note that concepts are
not features of the C++ language, but are rather the products
of what Gregor et al. refer to as a "grab-bag of template
tricks" [4]. The first issue with concepts as they are currently
known is that they do not lend themselves to informative
error messages. Violations cannot be reported without exposing
the programmer to the details of the implementation. This
means that compile-time errors can lead to dense barrages of
esoteric error messages that give the programmer little insight
into what went wrong. The second issue is that the complex
nature of template metaprogramming makes it difficult to map
concepts as described in the documentation to the specifics
of their implementation. For those who create and maintain
generic libraries, this means that it can be extremely difficult

to detect bugs and other issues in their code. The root problem
is that the C++ language lacks a construct to perform a vital
function, and this forces the developers of generic libraries to
resort to bricolage, cobbling together a functional equivalent
from whatever materials they have at hand. This satisfies the
immediate needs of the developers. However, in that concepts
do not formally exist, they cannot be formally reasoned about
or analyzed. For users, this is what leads to incomprehensible
error messages when they misuse templates. For developers,
this means that writing and maintaining template code be-
comes unnecessarily burdensome. The main contribution of
this work is the introduction of SimpleConcepts, a lightweight
extension to the C++ language to facilitate that development,
maintenance, and usage of generic libraries. SimpleConcepts
introduces several useful abstractions that perform the same
role as concepts via metaprogramming while being easier to
write, read, and formally analyze. This paper is organized as
follows. In §II, we characterize the previous work that has
been done to help modernize concepts in C++. In §III, we
describe the problem domain by investigating how concepts
work in generic libraries such as the STL, and in §IV we
introduce SimpleConcepts, give justifications for our approach,
and show how the functionalities provided by concepts via
metaprogramming map to the new model. In §V, we provide
formalisms for the syntax and semantics of SimpleConcepts. In
§VI, we compare our approach to previous and contemporary
alternatives. Finally, in §VII and §VIII we provide discussion,
conclusions, and plans for future work.

II. BACKGROUND

The first comprehensive attempt to provide high level
language support for concepts was the development of Tecton,
a domain-specific language (DSL) for generic programming
that was conceived by Stepanov, Kapur, and Musser in the
late 1970s [5]. The work that was done on that language fed
into the development of the STL by A. Stepanov [6]. After
the Hewlett-Packard implementation of the STL was made
publically available in 1994, the language evolved into one that
specialized in concept specification, as seen in Musser’s tech-
nical report in 1998 [7]; Tecton sought to provide a language-
independent means of describing constraints on generic types.
While it did not see widespread adoption, it did provide a
formal framework through which concepts could be under-
stood, laying the foundation for further developments. 1998
also marked the birth of the Boost libraries for C++ [8], and
two years later the collection was extended to include the Boost
Concept Check Library (BCCL), an effort spearheaded by

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 1535–1540

978-1-4673-4471-5/$25.00 c© 2013, IEEE 1535

Siek [9]. The BCCL is meant to provide clean and accessible
mechanisms for programmers to use concepts in generic code,
an improvement upon concepts as known in the STL. In the last
decade, the goal of researchers shifted away from providing
support for concepts in C++ by means of DSLs and library
support and towards the incorporation of concepts into the C++
language as an extension. A detailed review of this period
has been provided by Voufo and Lumsdaine [10]. The most
successful of these movements was ConceptC++, a project
which culminated in a proposal to the C++ standardization
committee that was not accepted in 2009 for want of simplifi-
cation and more testing [11] [12]. It is from ConceptC++ and
the work done in the intervening period that SimpleConcepts
draws much of its inspiration.

III. DOMAIN ANALYSIS

Here we shall provide a description of concepts as they are
known in the C++ Standard Template Library. As previously
described, the term concept refers to a set of constraints or re-
quirements on types. For instance, the concept EqualityCompa-
rable defines what it means for a type T to be comparable for
equality. In C++, this means that the expressions a == b and
a != b be valid for any two values a and b of type T. In the
STL, concepts are implemented as assertions with the help of
macros and made use of through statements such as

__STL_REQUIRES(X,_EqualityComparable);

which checks to see whether the type of a template param-
eter X models the concept EqualityComparable. Aside from
requiring that a type support certain operations, concepts can
also require that certain functions be supported or class mem-
bers exist. For example, the concept Container requires that its
models implement a size() method. Additionally, concepts may
require certain associated types be defined (e.g. a size_type for
the value returned by a call to a Container’s size() method).
Lastly, the documentation for a concept may also state that
certain invariants must be satisfied (e.g. identity or transitivity),
but these are assumed to be the case, and no actual verification
occurs. Concepts can be defined as a refinement of any number
of previously existing concepts. A refined concept adopts the
requirements defined by the concepts that it is refining. For
instance, the concept ForwardContainer is a refinement of the
concepts Container, EqualityComparable, and LessThanCom-
parable (if its elements model LessThanComparable). That is,
a ForwardContainer is a Container that also requires that its
elements be comparable to one another.

In order to produce an extension to the C++ language
that captures what these concepts do, we have to provide a
formalism that allows us to understand concepts independently
of their realizations. It would be a mistake to begin with a
deconstruction of the syntax and semantics of STL concepts,
because we are less interested in what they are; rather, we
seek to describe what they are meant to be. We ought to begin
with seeing the task of identifying and expressing concepts as
a problem domain that happens to intersect with the task of
generic programming. This domain is not complete or self-
contained as we cannot speak of constraints on types without
dealing with the particulars of some type system. However,
concepts, as entities in their own right, can be reasoned about.
Following the work of van Deursen and Klint [13], we shall

Fig. 1. FDL Diagram for Concepts

give a formal description of STL concepts using the Feature
Description Language (FDL). From attempting to derive a
formal description of concepts from our informal descrip-
tion, we can discern several truths. First, concepts cannot be
anonymous. They must exist prior to and independently of
the circumstances in which they are used, and therefore must
be named. Second, concepts must have one or more generic
type parameters. Concepts connect constraints to types, and
a concept that does not do this is an invalid concept. Third,
concepts are allowed to have no constraints, that is, they can be
empty. A concept with no constraints is trivially satisfied; all
types are models of an empty concept. This may seem puzzling
at first, but consider that a concept that introduces no new
constraints can still be useful if that concept is a refinement
of two or more concepts, because it implicitly expresses the
union of those concepts. Fourth, a concept may refine one or
more other concepts. To refine a concept is to implicitly add
its constraints to the concept. Lastly, comparing the informal
description of STL concepts and the diagram shown in Fig. 1,
one may note that invariants are not listed as a feature of
concepts, and this is deliberate. Invariants are the consequences
of satisfying both the syntactic and semantic requirements of
a concept. To state that invariants are a feature of concepts
means that there exists some has-a relationship between the
two, when in fact this is not the case. For example, the STL
documentation states that the reflexivity of the == operator is
an invariant of the concept EqualityComparable, that is, x ==

x for all x of type T that is a model EqualityComparable. From
a mathematical perspective, the invariant naturally follows if
we assume the conventional definition of equality. However, in
that C++ is a language that allows for operator overloading,
knowing that a type supports the == and != operators does
not tell us whether those operators behave in some prescribed
way. From this, we can conclude that there must be a limit to
the enforceability of concepts with regards to their semantics.
At the very least, finding the means to do so goes beyond the
scope of this paper.

IV. CONCEPTS

In SimpleConcepts, concepts are first-class representations
of constraints on type parameters of templates. The concepts
of SimpleConcepts obviate the need to use template metapro-
gramming to specify what a template requires of its type

1536 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

concept EqualityComparable<typename T> {
bool T::operator==(T rhs);
bool T::operator!=(T rhs);

}

Fig. 2. SimpleConcepts concept definition

template<typename R> requires EqualityComparable<R>
bool foo(R x, R y) { /∗ ... ∗/ };

Fig. 3. Requires clause

parameters. We designed SimpleConcepts with the following
goals in mind:

1) To provide the same functionality as STL concepts
while allowing programmers to write concept code
that preserves readability and allows the compiler to
produce meaningful error messages.

2) To make our extension to the C++ language as
lightweight and undemanding as possible, providing
more expressive power yet preserving the efficiency
of template programming.

A concept definition consists of a declaration and a body
containing concept member specifications. Fig. IV depicts the
definition of the concept EqualityComparable.

A concept definition establishes what it means for a type
T to be comparable for equality. Once a concept has been
defined, it can be used in template code by means of a
"requires" clause as is shown in Fig. IV. The requires clause
places a restriction on the type R to being one which supports
the == and != operators. Attempting to use the function foo
with any x and y of a type that does not support these operators
will lead to a compile-time error, informing the programmer
that the EqualityComparable concept was not satisfied.

V. IMPLEMENTATION

As was stated previously, a major consideration in the
design of SimpleConcepts was to produce an undemanding
extension, one that did not require significant overhaul or that
could break existing code. Our approach can be summarized as
follows. First, the source code is parsed according to an island
grammar that allows us to identify SimpleConcepts features
[14]. These constructs are then translated to existing C++11
features, and the resulting source code is passed to an ordinary
compiler. There are several advantages to this approach. First,
this approach allows us to handle both the syntactic and
semantic analysis of concepts without need to modify an
existing compiler. Second, using an island grammar allows us
to analyze the syntax of concepts in a context-free fashion.
Lastly, by means of translational semantics, we are able to
express the meaning of concepts in terms of language features
whose semantics are already well-known. The remainder of
this section addresses the details of this compilation model.

A. Abstract Syntax of SimpleConcepts

SimpleConcepts extends the C++ language to provide two
new language constructs: concepts and constrained templates.
A concept specifies a set of member function declarations and

concept Flammable<typename T>{
double T::burn();

}
template<typename V> requires Flammable<V>
void makeCampfire(V v){

double heat = v.burn();
/∗...∗/

}

Fig. 4. Example of SimpleConcepts in action

template<typename T>
struct Flammable {

Flammable_Requirements<T> rq0;
}

template<typename V>
void makeCampfire(V v){

while(false) { Flammable<V>(); }
/∗...∗/
double heat = v.burn();
/∗...∗/

}

Fig. 5. The first layer of the translation

associated types, and a list of other concepts that are refined by
it. A constrained template is one that has a concept requirement
clause, dictating what restrictions are placed on the template’s
parameters. Table I gives the abstract syntax and the syntactic
domains for SimpleConcepts.

B. Concrete Syntax of SimpleConcepts

An island grammar is a context-free grammar which de-
scribes some subset of the features of a language and uses
catch-all productions to ignore all else; the name of this
technique is derived from the view that the features we are
interested in capturing with the grammar are "islands" amidst
a vast sea of other language features. In this case, we are
only interested in parsing concept definitions and their uses so
that we can perform the necessary translations, and therefore
a grammar that allows us to identify salient features while
skipping the rest is ideal. Table II gives an EBNF grammar
for SimpleConcepts.

C. Summary of Translation Model

Our approach is based on the work done by Valentin
and Magne [15], which describes a means of converting
ConceptC++ code to pure C++03 code by translating the
concepts of ConceptC++ into sets of class templates. Here we
shall use a toy problem as a vehicle to explore the translation
scheme. Consider the code fragment in Fig. V-C.

A type T models the concept Flammable if it has a member
function called burn that takes no arguments and returns
a double. In other words, Flammables burn, and burning
produces an amount of heat expressed as a double. Below the
concept definition we see an example of a function template
that uses the concept Flammable. We shall describe, step by
step, the translation process. The translation from concept code
results in what can be seen as three distinct layers of template
code. Fig. V-C shows the first layer of the translation.

The struct Flammable has, as a member, another struct
representing the requirements associated with the concept

REED MILEWICZ, MARJAN MERNIK, PETER PIRKELBAUER: SIMPLECONCEPTS: SUPPORT FOR CONSTRAINTS ON GENERIC TYPES IN C++ 1537

TABLE I. ABSTRACT SYNTAX AND SYNTACTIC DOMAINS OF SIMPLECONCEPTS

Type Variables α ∈ TyV ar

Concept Names s ∈ CName

Member Names f, at ∈ MemName

Concept C ∈ C := conceptCid {B}; ‖ conceptCid requiresR {B}

Concept Identifier Cid := s < P >

Concept Parameters P := αP‖α

Refinement Clause R := CidR‖Cid

Concept Body B := MB‖ǫ

Concept Member M := f func; ‖typename at

Constrained Template T ∈ Tc := template < params > requires R template − body

Here C refers to the set of all concepts, and Tc refers to the set of all constrained templates.

TABLE II. CONCRETE SYNTAX OF SIMPLECONCEPTS

<concept-id> := <concept-name> "<" <concept-parameter list> ">"

<concept-name> := <identifier>

<concept-definition> := "concept" <concept-id> <requires-clause>? <concept-body> ";"?

<concept-body> := "{" <concept-member-specification>? "}"

<concept-member-specification> := <concept-member-specifier> <concept-member-specification>?

<concept-member-specifier>:= <associated-function> | <associated-type>

<associated-function> := <function-definition>

<associated-type> := <typename-specifier>

<requires-clause> := "requires" <requirement-list> | "requires" "(" | <requirement-list> ")"

<requirement-list> := <requirement> "&&" <requirement-list> | <requirement>

<requirement> := <concept-id>

<declaration> := <concept-definition>

<template-declaration> := "template" "<" <template-parameter-list> ">" <requires-clause>?

<concept-parameter list> := <template-parameter-list>

Non-terminals that refer to pre-existing C++11 features are in bold for clarity.

CREATE_MEMBER_FUNC_SIG_CHECK(burn,double (T::∗)(void));
template<typename T>
struct Flammable_Requirements {

static_assert(has_member_func_burn<T>::value,
"The member function ’burn’ is not available"
" or does not match signature.")

};

Fig. 6. The second layer of the translation

Flammable. The requirements are separated from the concept
itself in order to support refinement; a concept that refines
another concept "inherits" the requirements from its ancestor,
and the ancestor’s requirements struct is listed there as well.
Attempting to instantiate the Flammable template will require
the instantiation of the template Flammable_Requirements.
If that instantiation fails, the code will fail to compile. To
implement constraints on template functions, we cause trigger
the instantiation of Flammable in the template function as
seen in the template function code. The call to the constructor
of Flammable is placed in an unreachable block of code
to guarantee that no run-time overhead will result. Now we
examine the second layer of the translation: expressing the
requirements enumerated by a concept. A Requirements struct
contains a set of static assertions that express the requirements
that must be fulfilled by a type or set of types in order
to model a concept. These assertions are checked when the
compiler attempts to instantiate the Flammable_Requirements
template. The code that we generate for the definition of
Flammable_Requirements is provided in Fig. V-C.

The macro CREATE_MEMBER_FUNC_SIG_CHECK

provides template code necessary to check the existence
of a member function that matches both the name and
the signature specified by the concept. The instantiation of
has_member_func_burn will always succeed, but its member
’value’ will be true if and only if T has a burn method that
matches the signature specified in the concept definition. This,
in turn, determines whether the corresponding static assertion
succeeds or fails. The code generated by the pre-processor is
shown in Fig. V-C.

This then is the third and innermost layer of the translation.
Our mechanism verifies the existence of the member function
burn in a way that gives a true or false value which is used in
the static assertion. This allows us to report meaningful error
messages.

D. Semantics of SimpleConcepts

We shall describe the translational semantics of Sim-
pleConcepts. In that concepts and constrained templates are
ultimately converted to template code, the semantics of con-
cepts are a subset of the semantics of templates. With that
in mind, we adapt the work done by Siek and Taha [16]
to provide formalisms to describe the semantics of C++
templates. By providing a mapping from the abstract syntax
of SimpleConcepts to that of C++ template code, we can then
make the jump to the semantics. We represent our translation
function as a set of functions that map SimpleConcepts code
to C++11 code. The first subset of these translation functions,
defined in Fig. V-D, describes the translation of concepts and
their members (note that T refers to the set of all C++11
templates).

1538 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

template<typename T, T>
struct match_signature : std::true_type {};

template<typename T, typename = std::true_type>
struct has_member_func_burn : std::false_type {};
template<typename T>
struct has_member_func_burn<T, std::integral_constant < bool , match_signature<fSig, &T::fName>::value >> : std::true_type {}

Fig. 7. The innermost layer of the translation.

FC(C ∈ C) = {Cid {{requirementsCid
〈P 〉}

∪ {requirementsr 〈Pr〉 ∀r ∈ R} ∈ T, requirementsCid
〈P 〉 {Fm1(B)} ∈ T), Fm2(B)}

Fm1(B) = {static_assert(has_member_func_fname 〈P 〉 :: value, errormsg)∀f ∈ R} ∪ {typedefat∀at ∈ R}

Fm2(B) = {CREATE_MEMBER_FUNC_SIG_CHECK(fname, fsignature)∀f ∈ B}

Fig. 8. A formal description of the translation function

// function member checking template macros here,
// one for each associated function f ∈ B
template<P>
struct ConceptName_Requirements {

// A list of static assertions, one for each associated function f ∈ B,
// and a list of typedefs, one for each associated type definition a_t ∈ B

};
template<P>
struct ConceptName {

ConceptName_Requirements<P> rq_c;
id_0_Requirements<P_0> rq_0;
// . . . for every concept refined by this concept . . .
id_n_Requirements<P_n> rq_n;

};

Fig. 9. Summary of the output of the translation function

In terms of the concrete syntax, this translation amounts to
the code fragment depicted in Fig. V-D.

The second subset of the translation functions transform
constrained function and class templates into C++11 legal tem-
plates. These can be summarized as follows: for a constrained
function template, our translation moves the concept require-
ments into the body of the function as calls to constructors;
for a constrained class template, the concept structs are made
members of the class. The result of this translation scheme is
that instantiations of constrained class templates amount to a
chain of instantiations that perform the necessary checks to
confirm that the types involved are models of the concepts
required. Concept instantiations lead to requirement template
instantiations, and those in turn lead to member function
checking template instantiations. With that, the only way to
make use of a constrained template class or function is to
supply it with valid types, or compile-time errors will result.
As for the concepts themselves, whose capabilities are limited
to checking the existence of function members, we know that
our translation does exactly that and nothing more.

VI. RELATED WORK

As has been stated in previously, the absence of concepts
in C++ is not a new problem; each attempt at a solution has
built upon the groundwork laid by predecessors. In this section,
we shall attempt to compare and contrast past and current
approaches with SimpleConcepts.

A. Concepts Lite

At this time, there exists another proposal to provide
support for C++ concepts by Sutton and Stroustrup known
as Concepts Lite [17] [18]. In this section, we shall attempt to
compare and contrast that approach with SimpleConcepts.

Sutton and Stroustrup, the creators of Concepts Lite, have
summarized their vision as "concepts = constraints + axioms"
[19]. Concepts are abstract predicates that represent sets of
requirements on generic types. These requirements can either
be constraints or axioms. Constraints are syntactic require-
ments on the properties of generic types, which are checked
at compile-time, and axioms are semantic requirements, anal-
ogous to the invariants of the STL documentation. As of the
latest proposal, Concepts Lite supports constraints, but does
not yet support axioms or concepts. With the understanding
that the specifics of this proposal may be changed in the
near future, we note the key differences between the two
approaches.

First, while both SimpleConcepts and Concepts Lite share
a similar notion of constraints, they differ greatly in terms of
their implementation. In Concepts Lite, a constraint predicate
is defined as a function template that contains a constant
expression, referred to as a "use pattern". A type or set of types
satisfies a constraint if the template can be legally instantiated,
which is to say that the constant expression is valid. For
example, a type T is Addable provided that for expression
a + b is valid for any a and b of type T. In the syntax of
Concepts Lite, this constraint might be expressed as follows:

template <typename T>

constexpr bool Addable() { return

__is_valid_expr{bool={declval<T>() +

declval<T>()} }

This approach differs from that of SimpleConcepts in three
ways. First, Concepts Lite decouples concepts and constraints,
which allows us to define Addable as a stand-alone constraint;
in SimpleConcepts, which keeps constraints and concepts
coupled, Addable would be expressed as a concept with
a single constraint member. Second, Concepts Lite requires
extensions to the compiler to support new intrinsics such as
__is_valid_expr; SimpleConcepts uses a preprocessor to

REED MILEWICZ, MARJAN MERNIK, PETER PIRKELBAUER: SIMPLECONCEPTS: SUPPORT FOR CONSTRAINTS ON GENERIC TYPES IN C++ 1539

lower concepts to existing C++11. Third and most importantly,
whereas Concepts Lite uses constant expressions to define
constraints, SimpleConcepts relies on function signatures.

Next, in contrast to Concepts Lite, this paper rejects the
inclusion of axioms in its definition of concepts as going
outside of the role that concepts are intended to fulfill, which
is to provide compile-time support for templates. According to
its authors, axioms are not statically evaluable, which implies
that the question of whether a generic type truly models
a concept, both syntactically and semantically, cannot be
decided at compile-time. While we recognize the fundamental
relationship between the two kinds of requirements, and we
appreciate the simplicity and beauty of an approach that unifies
them, we do not see a pressing need to incorporate axioms.

B. ConceptsC++

SimpleConcepts draws inspiration from the ConceptsC++
proposal, and in a certain sense can be seen as an evolution
of it. In ConceptsC++, as in SimpleConcepts, concepts are
sets of requirements, which can be expressed as signatures
and associated types, and these concepts can be refined from
other concepts, and they can be imposed upon generic types
through the use of requirement clauses. Key to ConceptsC++
is its emphasis on retroactive modeling, that is, the ability
to extend types to model concepts without modifying those
types. This is accomplished through the use of concept maps,
which detail how a type satisfies the requirements of a concept;
concept maps can contain implementations of the functions
required by the concept, either providing new functionalities or
overriding exisiting ones. In contrast, SimpleConcepts does not
support retroactive modelling, and does not support concept
maps. There are also several other differences between the
two approaches, which we shall list here:

• ConceptsC++ allows for non-member associated func-
tions. The implementations of these functions can
either be defined via a concept map or a default
implementation can be provided in the concept itself.
SimpleConcepts, meanwhile, requires that all associ-
ated functions be member functions.

• ConceptsC++ distinguishes between refinement
clauses, and associated requirements, both of which
allow a concept to "inherit" requirements from other
concepts. In SimpleConcepts, no such distinction is
made; a concept can have a requires clause that lists
all of the other concepts that it draws requirements
from.

• ConceptsC++ supports axioms. As was explained in
the previous subsection, SimpleConcepts does not
support this language feature.

VII. DISCUSSION

Our approach is not without limitations. Most notably,
when translating refined concepts or constrained templates, it is
assumed that the concepts that are being refined or used already
exist, but this is not guaranteed to be the case. Referencing a
non-existent concept will lead to a compile-time error, but that
error is reported in terms of the translated code rather than the
original source code, which could be problematic.

VIII. CONCLUSION AND FUTURE WORK

It has been shown that C++ lacks language support to
specify constraints on generic types, and that this lack is the
underlying cause of many difficulties for both the users and
developers of generic libraries. To that end, we introduced
SimpleConcepts, an extension to the C++ language to provide
such support. Our approach uses source-to-source transforma-
tions to provide an extension that is intended to be compatible
with pre-existing C++11 compilers, while providing simple
but powerful abstractions to aid in the design and use of C++
template libraries.

Moving forward, if the completed Concepts Lite is incor-
porated into the next iteration of the C++ language, then we
shall turn our attention towards providing a formal analysis
of such C++ concepts. In the short term, we hope to release
a compiler front-end to provide experimental support for
SimpleConcepts.

REFERENCES

[1] B. Stroustrup, The C++ programming language; 4th ed. Addison-
Wesley, 2013.

[2] A. Stepanov and P. McJones, Elements of Programming. Addison-
Wesley, 2009.

[3] M. Austern, Generic programming and the STL: using and extending

the C++ Standard Template Library. Addison-Wesley, 1998.

[4] D. Gregor, B. Stroustrup, J. Järvi, and G. D. Reis, “Concepts: Linguistic
support for generic programming in C++,” in SIGPLAN Notices. ACM
Press, 2006, pp. 291–310.

[5] D. Kapur, D. R. Musser, and A. Stepanov, “Tecton: A framework for
specifying and verifying generic system components,” 1983.

[6] A. Stevens, “Al Stevens interviews alex stepanov,” 1995.

[7] D. Musser, “Syntax of the tecton language,” 1998.

[8] B. Dawes, “Proposal for a C++ library repository web site,” 1998.
[Online]. Available: http://www.boost.org/users/proposal.pdf

[9] J. Siek and A. Lumsdaine, “C++ concept checking: A better practice
for C++ programming,” 2001.

[10] L. Voufo and A. Lumsdaine, “A uniform terminology for C++ con-
cepts,” Indiana University Technical Report, Tech. Rep. TR 703, January
2013.

[11] D. Gregor and B. Stroustrup, “Proposed wording for concepts
(revision 3),” no. N2421=07-0281, 10/2007 2007. [Online]. Available:
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2007/n2421.pdf

[12] D. Kaley, “Bjarne stroustrup expounds on concepts and the future of
C++,” 2009.

[13] A. van Deursen and P. Klint, “Domain-specific language design requires
feature descriptions,” Journal of Computing and Information Technol-

ogy, vol. 10, p. 2002, 2001.

[14] L. Moonen, “Generating robust parsers using island grammars,” in The

8th Working Conference on Reverse Engineering. IEEE Computer
Society Press, 2001, pp. 13–22.

[15] D. Valentin and H. Magne, “Concepts as syntactic sugar,” in SCAM,
2009, pp. 147–156.

[16] J. Siek and W. Taha, “A semantic analysis of C++ templates,” 2006.

[17] B. Stroustrup, A. Sutton, L. Voufo, and M. Zalewski, “A concept
design for the STL,” ISO/IEC JTC1/SC22/WG21—The C++ Standards
Committee, Tech. Rep. N3351=12-0041, January 2012.

[18] A. Sutton and B. Stroustrup, “Concepts lite: Constraining templates
with predicates,” 2013.

[19] ——, “Design of concept libraries for C++,” in Proceedings of the

4th international conference on Software Language Engineering, ser.
SLE’11. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 97–118.

1540 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

