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a b s t r a c t

Proxy applications are developed to simplify studying parallel performance of scientific simulations and to
test potential solutions for performance problems. However, proxy applications are typically too simple to
allow work migration or to represent the load imbalance of their parent applications. To study the ability
of load balancing solutions to balance work effectively, we enable work migration in one of the Exascale
Co-design Center for Materials in Extreme Environments (ExMatEx) [1] applications, CoMD. We design
a methodology to parameterize three key aspects necessary for studying load imbalance correction:
(1) the granularity with which work can be migrated; (2) the initial load imbalance; (3) the dynamic
load imbalance (how quickly the load changes over time). We present a study of the impact of flexibility
inworkmigration in CoMD on load balance and the associated rebalancing costs for a wide range of initial
and dynamic load imbalance scenarios.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Modern scientific simulations rely on parallel computers to
solve state of the art problems requiring vast computational re-
sources. The largest supercomputers have millions of independent
processors, and concurrency levels are rapidly increasing. For ideal
efficiency, developers of the simulations that run on these ma-
chines must ensure that computational work is evenly balanced
among processors. Dynamic load balancing is a way to correct the
imbalances that arise throughout the application execution, and
is increasingly important for overall application performance as a
simulation with more processes will waste more resources than a
smaller-scale simulation when waiting on a single slow process.
To enable dynamic load balancing, applications must implement
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a mechanism for work migration. We present a methodology for
studying how flexibility in work migration impacts the trade off
between the ability to balance the work effectively and the associ-
ated costs.

Proxy applications can make it easier to study performance of
large simulations and try new solutions. However, as the result
of simplification, many proxy applications are not suitable for
studying load imbalance solutions because they do not implement
work migration. In this work, we extend one of the ExMatEx proxy
applications, CoMD, to enable work migration, and to represent
dynamic load imbalance found in large scale molecular dynamics
simulations. Tomimic real simulations, we develop amethodology
to set up initial load imbalance, and to dynamically control the
imbalance as the simulationprogresses.Weenable flexibility in the
granularity of work migration in CoMD, which allows us to study
the impact of theworkmigration granularity on the ability to lower
the imbalance in the simulation and the associated rebalancing
costs.
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Table 1
Example load distributions and their imbalance.

Load on each process Lmax Lave Imbalance

(a) 2 2 0%

(b) 3 2 50%

(c) 3 2 50%

(d) 3 2 50%

In this paper, we describe the control mechanisms for (1) initial
load imbalance, (2) dynamic imbalance, and (3) work migration
granularity we introduced in CoMD. Together, these three aspects
enable us to study the effectiveness of load balancing solutions
and their costs when the application presents different imbalance
behaviors (high/low initial imbalance, fast/slow rate of change
in imbalance). We show that our version of CoMD is useful in
evaluating work migration granularity and load balance algorithm
performance for applications with different imbalance behaviors.

Our contributions in this paper are:

• A proxy application that allows us to study work migration
granularity, load imbalance and potential solutions;

• Ability to control initial load imbalance, dynamic load im-
balance, and flexibility in work migration;

• An evaluation of a load balance algorithm performance on a
wide range of initial and dynamic load imbalance scenarios
generated using our new proxy application.

Section 2 describes related work. Section 3 describes the orig-
inal CoMD proxy application. Section 4 describes how we create
initial load imbalance in CoMD, and how we make load imbalance
dynamic in CoMD. Section 5 outlines the changes we made to the
implementation of CoMD to enable work migration. Section 6 de-
scribes our interface for load balance algorithms. Section 7 shows
our results.

2. Definitions and related work

For this paper, we define load imbalance as the scaledmaximum
load on any process minus the average:

Imbalance =

(
Lmax − Lave

Lave

)
× 100%. (1)

The definition in Eq. (1) represents opportunity cost of load bal-
ancing, as shown in Table 1 [2]. Example (b) shows process loads
with 50% imbalance, and because the maximum process load is
3 units, the execution time is 3 units, which is 50% longer than the
execution of the balanced example (a) (2 units).

Many simulations implement their own load balance algo-
rithms that are tightly coupled with application data structures
(i.e., ParaDiS [3,4]). Others rely on stand-alone libraries like graph
partitioners (i.e., ParMetis [5,6], Jostle [7,8], and Zoltan [9,10]).
Testing whether their own or stand-alone load balance solutions
can correct load imbalance is non-trivial for a production applica-
tion as enabling work migration can involve significant changes
to the application data structures. Our work aims at providing
a testbed to enable evaluation of load balance solutions prior to
performing the work necessary to enable work migration, and
informing decisions about granularity ofworkmigration necessary
for the load balance solutions to be successful.

Some applications have the option of using the Adaptive Mes-
sage Passing Interface (AMPI) developedby theCharm++group [11,
12] to overdecompose the simulation domain [13] and then bal-
ance load by moving virtual processors from overloaded physical
processors to the underloaded ones. This approach is application
agnostic and based solely on runtime information, but can impose
extra communication overhead for tightly coupled applications
due to the increase in the surface to volume ratio of the smaller
domains. Our work enables testing of load balance algorithms
that can rebalance the application based on the input from the
application.

LeanMD [14] is a parallel molecular dynamics simulation
frameworkwritten in Charm++ that exhibits load imbalance.While
it is useful for exploring the built-in Charm++ load balance algo-
rithms, it does not provide the controlmechanisms to set up differ-
ent load balance scenarios, which are the main contribution of this
work. Similarly, the AMR mini-app implemented in Charm++ and
miniAMR from theMantevo suite [15] do not have amechanism to
control the imbalance.

The Particle-in-cell (PIC) Parallel Research Kernel (PRK) [16] is
a paper-and-pencil specification of the computational task to be
computed. PIC PRK was developed to help measure the efficiency
and effectiveness of dynamic load balance techniques. Similarly to
our work, they introduce different imbalance scenarios to test load
balance algorithms. Particle distribution in PRK can be exponential,
sinusodial, or linear, resulting in different initial load imbalance. To
simulate dynamic imbalance, particles can be uniformly injected
or removed throughout execution. Besides representing a different
class of simulations, our work goes a step further by explicitly
parameterizing the initial and dynamic load imbalance. We also
parameterize work assignment granularity to allow studying how
flexibility in work assignment impacts the ability to rebalance the
application.

3. CoMD: ExMatEx proxy app

Molecular dynamics is an important class of simulations that
evaluates the forces that the atoms in the system exert on each
other over time. CoMD [17] is an ExMatEx [1] classical molecular
dynamics proxy application designed to represent this class of sim-
ulations. CoMD supports two potential energy models, Lennard–
Jones (LJ) [18] and the Embedded Atom Method (EAM) [19,20].

In the simulation, each atom can interact only with other atoms
located within a cutoff region defined by the potential function.
Because atoms that are far apart have little effect on each other,
classical MD simulations frequently use atom interaction mod-
els that define the force between two atoms to be zero when
their separation distance exceeds a cutoff radius. This reduces the
complexity of the force calculation to O(n). Fig. 1 illustrates some
molecular dynamics definitions in 2D. Fig. 1(a) shows a selected
atom and a circle with the cutoff radius which defines the range
of interaction. To simplify finding which of the atoms are within
the cutoff radius, CoMD divides the simulation space into cells that
are no smaller than the cutoff radius, as shown in Fig. 1(b). This
cell definition guarantees that the atoms within the cutoff radius
from an atom are either in the same cell as the atom, or in the
immediately surrounding cells.

CoMD uses a Cartesian spatial decomposition of atoms across
processes, with each process responsible for computing forces and
evolving velocities and positions of all atoms within its domain
boundaries. As atoms move across domain boundaries, they are
handed off from one process to the logically neighboring process.
To compute forces between atoms on different domains, CoMD
uses ghost cells, defined as local copies of the immediately neigh-
boring cells residing on the logically neighboring processes. Sim-
ilar to other molecular dynamic simulations, CoMD uses periodic
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(a) Cutoff radius defines atom inter-
actions to compute.

(b) Regular grid defines proximity of
atoms in space.

Fig. 1. Molecular dynamics definitions.

boundaries, allowing the atoms near the boundaries to interact
with the atoms on the opposite side of the simulated space.

CoMD has been implemented in many different programming
models, including MPI+X, CUDA, OpenCL, OpenACC, and X10. For
this work we focus on load balancing across nodes in the system,
therefore we use the MPI version of CoMD.

4. Introducing load imbalance in CoMD

In this section, we describe how we introduce initial load im-
balance in CoMD, and how we ensure the load imbalance changes
throughout the simulation.

4.1. Initial load imbalance

The reference implementation of CoMD evenly divides the sim-
ulated space between processes. Because the atoms are uniformly

spaced at setup, the atoms and the number of atom interactions
that need to be computed are also evenly divided between pro-
cesses, making the simulation inherently load balanced. To intro-
duce load imbalance,we introduce voids in the simulated structure
by removing some atoms from the simulation. Although CoMD
simulations are 3D, for simplicity, Fig. 2 shows 2D examples.

Fig. 2(a) illustrates a four-process problem with four cells as-
signed to each process; the atoms are shown in green. CoMDplaces
atoms on a lattice at the beginning of the simulation, resulting
in a load balanced decomposition. We next place spheres with
some diameter at random coordinates in the simulated space, as
shown in blue in Fig. 2(b). Next, we remove the atoms whose
coordinates are inside the spheres, as shown in Fig. 2(c). While the
spheres are not part of the simulation, we use the concept of the
spherical voids in this work to reason about the uniformity of atom
distribution in the simulated space. After we remove the atoms
and create the spherical voids, the number of atoms assigned to
each process is different, and so is the number of atom interactions
the processes will compute, as shown in Fig. 2(d). We expose
the control mechanism for the initial load imbalance in CoMD by
adding the following user-specified runtime parameters: (1) the
spherical void size, (2) the sphere count, and (3) a random seed for
generating the coordinates for the sphere center.

4.2. Dynamic load imbalance

To create dynamic load imbalance in CoMD, we introduce the
ability to set a non-zero center of mass velocity for the simulation.
This causes the atoms to gradually shift in any of the three spatial
dimensions (or combination of them) by a fixed distance at every
time step.

(a) CoMD generates initial atom posi-
tions on a lattice.

(b) Randomly place spheres in space. (c) Remove atoms within the spheres.

(d) Initial imbalance is created in
CoMD.

(e) Forces change atom positions dur-
ing simulation.

(f) Shift atoms to make imbalance dy-
namic.

Fig. 2. Introducing load imbalance in CoMD. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Original CoMD: Single domain
per process.

(b) Modified CoMD: Multiple do-
mains per process.

(c) Modified CoMD: Enabled work
migration.

Fig. 3. Using domain overdecomposition to enable load balancing.

Fig. 4. Algorithm: Standard proxy application.

Fig. 5. Algorithm: Overdecomposed proxy application.

We start with the atom distribution we described in the pre-
vious section and demonstrated in Fig. 2(d), where process 1 and
process 2 have fewer atoms than process 0 and 3. Fig. 2(e) demon-
strates the simulation a timestep later; the atoms have changed
positions due to the forces applied to them. Next, in this example,
the non-zero center of mass velocity shifts the atoms horizontally,
as shown in Fig. 2(f). Nowprocess 0 has fewer atoms, while process
1 has more.

Because MD is translationally invariant, this overall shifting
the atoms preserves the force interactions between the atoms
but changes which process has to compute the interactions. We
implemented the center of mass velocity as a runtime parameter;
the user indicates the dimension(s) along which the atoms should
be shifted, and the shift distance in Angstroms per time step for the
selected dimension(s). Atoms can be shifted by a different distance
in each dimension. This simulates a production application where
the amount of work per process changes over time throughout the
application runtime.

5. Enabling work migration in CoMD

The reference implementation of CoMD does not allow the
correction of load imbalance because of several design decisions.
For one, CoMD decomposes the simulated space into the same
number of domains as processes, and assigns one domain per
process. Also, the domains are rectangular prisms of the same size,
and the user cannot control the size or the shape of the domains.
Fig. 3(a) shows the simulation space in CoMD decomposed into
four equal-sized rectangular domains; one domain is assigned
to each process. Additionally, once the domains are assigned to
processes, the assignment cannot be changed, so dynamic changes
in work cannot be reflected in the work assignment.

We relaxed these design decisions by overdecomposing the
application into more domains than available processes. Fig. 3(b)
shows the same simulation space decomposed into 16 domains;

the domains are then assigned to four processes. However, if one
process hasmore work than others, the assignmentmight bemore
balanced if we move one of the domains to another process, as
shown in Fig. 3(c).

In our implementation, we introduce a data structure to store
the assignment of domains to processes. Our domain graph consists
of vertices which represent domains, and edges which represent
boundaries with logically neighboring domains. The domain graph
is distributed between processes, and each process stores local
domains and edges to local and remote logically neighboring do-
mains.

Fig. 4 shows pseudocode for a typical proxy application; each
process performs computation on a single domain, and processes
communicate boundary results with the logically neighboring pro-
cesses. Fig. 5 shows pseudocode for an overdecomposed imple-
mentation. Each process is now responsible for computing the
forces on one or more domains, and communicating the velocity
and position updates accordingly.

We compare performance of our overdecomposed version of
CoMD with the original implementation to ensure that we have
not substantially changed the performance of the proxy applica-
tion. For these experiments, we use load balanced CoMD, without
introducing load imbalance yet. CoMD implements two common
potentials, Lennard–Jones (LJ) and the Embedded Atom Method
(EAM). Within each timestep, CoMD computes the forces between
the particles (using one of the potentials), exchanges ghost cells,
and updates atoms. In Figs. 6–9, we show the runtimes for these
main computational phases for the original and overdecomposed
versions of CoMD. We show both weak scaling (with 256 K atoms
per process) and strong scaling (256 M atoms overall).

Tomeasure the penalty of overdecomposition, for these experi-
ments we set the domains to be the smallest possible size, which is
equal to a single box in CoMD. In the weak scaling case, this means
we have 13,824 domains per process. In the strong scaling case, we
have 13 M domains overall.

Fig. 6 shows the runtime of the force computation for both po-
tentials, for the original implementation of CoMD and our overde-
composed version. Both figures demonstrate that the runtime is
slightly shorter for our overdecomposed implementation. Thismay
be because in the original implementation, there are many link
cells per domain, and in our overdecomposed approach there are
fewer link cells per domain. Becausewe are computing atom–atom
interactions for atoms in different link cells, our overdecomposed
approach improves cache reuse similar to blocking in matrix–
matrix multiplication.

Fig. 7 shows the runtime of the ghost exchange for Lennard–
Jones and EAMpotentials for the original implementation of CoMD
and our overdecomposed version. In the ghost exchange phase,
each process gathers information about the atoms that interact
with atoms on the neighboring processes, and sends it to the
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(a) Weak scaling, 256 K atoms per process. (b) Strong scaling, 256 M atoms.

Fig. 6. Force computation (1000 timesteps) for original CoMD vs. overdecomposed CoMD.

(a) Weak scaling, 256 K atoms per process. (b) Strong scaling, 256 M atoms.

Fig. 7. Ghost exchange (1000 timesteps) for original CoMD vs. overdecomposed CoMD.

(a) Weak scaling, 256 K atoms per process. (b) Strong scaling, 256 M atoms.

Fig. 8. Atom update (1000 timesteps) for original CoMD vs. overdecomposed CoMD.

(a) Weak scaling, 256 K atoms per process. (b) Strong scaling, 256 M atoms.

Fig. 9. Total runtime (1000 timesteps) for original CoMD vs. overdecomposed CoMD.
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logically neighboring processes. In our implementation, because
there are several domains assigned to a process, the process has to
go through more link cells to gather the appropriate information,
which results in a longer runtime of this phase. However, the cost
is still comparable to the original implementation of CoMD, and
scales similarly for both strong and weak scaling.

Fig. 8 shows the runtime of resorting the particle data and
moving the particle information to the link cell that the particles
now reside in. Similarly to the ghost exchangephase, in our overde-
composed version for this phase each process has to go through
more lists, resulting in longer runtime for this phase than in the
original implementation, but similar scaling properties.

Fig. 9 summarizes the impact of overdecomposition on the
overall runtime for Lennard–Jones and EAM potentials. Our
overdecomposed implementation does not significantly change
the overall performance of CoMD.

We implement overdecomposition granularity as a runtime
parameter to let us study the trade off between loadbalance quality
and cost. Our hypothesis is that applications withmoderate imbal-
ance should be possible to balance even when work assignment
granularity is large (i.e., 8 domains per process). Applications with
more severe imbalance or more dynamic imbalance may require
a finer granularity of work assignment; in this case, the higher
cost of rebalancing may be justified bymore flexibility in making a
more balanced work assignment. Our proxy application allows us
to easily study these trade offs.

6. Load balance algorithm interface

Our overdecomposed implementation of CoMDmaintains a dis-
tributed domain graph where the vertices represent domains, and
edges represent boundaries with logically neighboring domains.
A vertex in the domain graph represents the smallest migrat-
able unit in the application; its optional weight represents the
amount of work in that domain. If the weight is not provided,
vertices are assumed to be equally weighted. In this paper, we
explore two approaches to estimate the work in the domain:
(1) as the number of atoms in the domain, and (2) as the num-
ber of interactions computed for the domain, which has been
shown to be a useful estimate for molecular dynamics simula-
tions [21]. In Section 7.2, we will evaluate these two techniques
for load balancing CoMD’s computation of Lennard–Jones and EAM
potentials.

Our distributed domain graph can be easily translated to CSR
format, and used as an input to generic load balance algorithms like
graph partitioners (i.e., ParMetis [5,6], Jostle [7,8], and Zoltan [9,
10]). The output of a load balance algorithm is an assignment of
domains to processes. Our implementation sends the domain to
its new process and updates the domain graph.

For the results shown in this paper, we used a simple load
balance algorithm based on a spatial sort. First, the domains are
spatially sorted using a Hilbert curve or Morton curve based on
the region of simulated space they represent. Next, the curve is
partitioned between the processes, taking domain weights into
consideration. This algorithm has the complexity of a sorting al-
gorithm in terms of the number of domains sorted. So far, we
used a sequential implementation of the algorithm, necessitating
reduction of the relevant information to a single process. In the
future, we plan to use a variety of more sophisticated and parallel
load balance methods.

Our domain graph is a suitable interface with load balance
algorithms since many load balance algorithms use graphs as a
representation of the application communication.

7. Results

In this section, we evaluate how different work assignment
(overdecomposition) granularity, initial load imbalance, and ve-
locity of shifting the atoms in the simulation impact the ability of
a load balance algorithm to correct the imbalance. We study the
tradeoffs of load balancing accuracy and rebalancing costs.

For our experiments, we use a Linux cluster with nodes con-
sisting of two 2.8 GHz Hex-core Intel Xeon EP X5660 processors,
twelve cores per node. All nodes are connected by QDR Infiniband.
We use GCC 4.4.7 and MVAPICH v0.99 on top of CHAOS, an HPC
variant of RedHat Enterprise Linux (RHEL), running at Linux kernel
v2.6.32.

For our measurements, we use Caliper [22], a generic context
annotation tool developed at LLNL. Using Caliper, we annotate the
phases of execution in the application, and measure how much
time the phases take at each time step. The per-timestep mea-
surements allow us to observe the performance changes in the
simulation over time.

We define the load of an MPI process in a timestep as the total
time minus the time waiting at MPI synchronizations:

Lprocess = Ttotal − Tsync . (2)

We use Caliper’s MPI service to measure the time each pro-
cess spends in MPI_Barrier, MPI_Allreduce, MPI_Alltoall, and
MPI_Waitall functions at each timestep. Tsync in Eq. (2) is simply
the total time the process spends in MPI synchronizations at each
timestep. We use the measurements for process loads compute
load imbalance using Eq. (1). We use these definitions for describ-
ing our experiments and results.

7.1. Creating initial load imbalance

The first control mechanism for our study is introducing initial
load imbalance before running the simulation. For these exper-
iments, we started by generating 23,328,000 atoms on 64 pro-
cesses. The simulated space is a cube with a side length of 650.24
Angstroms; each process starts with a cube with a side length of
162.56 Angstroms. We varied the number and size of spherical
voids to generate a set of problemswith different number of atoms
and load imbalance for our experiments.

Fig. 10 shows a set of problems with different configurations
for spherical voids. We varied the number of voids from 2 to
10 per process. We varied the radius of the voids from 19.3 to
52.4 Angstroms. The parameterized atom removal resulted in a
different number of atoms for each problem. Fig. 10(a) shows the
resulting initial imbalance for each problem, as defined by Eq. (1).
Generally, large spherical voids lead to less uniform distribution of
atoms in the problemand therefore higher imbalance anddifficulty
in load balancing.

We overdecomposed the generated set of problems and load
balanced them. We experimented with three granularities of
overdecomposition: 8 domains per process (8x overdecomposi-
tion), 64 domains per process (64x overdecomposition), and 512
domains per process (512x overdecomposition). Decomposing the
problem into more domains gives us more flexibility in terms of
work assignment since it allows us to migrate smaller portions of
the problem space. Fig. 10(c) shows the load imbalance for each
granularity of overdecomposition after rebalancing. The problems
with higher initial imbalance still had higher imbalance even after
the rebalancing step, as compared to the problems with lower
initial imbalance. This is due to the fact that large spherical voids
result in problems with less uniform atom distribution, which are
more challenging to load balance. Different granularities of overde-
composition result in roughly the same load imbalance for each
problem, with smaller granularities of overdecomposition mostly
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(a) Varying load balancing difficulty. (b) Load balance algorithm time + redistribution time.

(c) Detailed parameters and statistics.

Fig. 10. Initial load imbalance scenarios in CoMD (64 processes, 23 M atoms initially).

achieving slightly lower imbalance due to having more flexibility
in work assignment. In some instances, smaller granularity of
overdecomposition does not result in lower imbalance, although
the difference is negligible and is due to the fact that the work
cannot be evenly divided between processes even with smaller
granularity.

We used our set of problems with different initial load imbal-
ance and parameterized overdecomposition granularities to look
at the costs of rebalancing and redistributing work. Fig. 10(b)
shows that larger granularities of overdecomposition result in
higher costs of rebalancing, due to the finer granularity of work as-
signment. Additionally, the cost of rebalancing was slightly higher
in problems with more severe imbalance as more domains were
migrated during rebalancing.

While Fig. 10(a) suggests slightly better load balance with
smaller granularities of overdecomposition, Fig. 10(b) shows the
higher costs of overdecomposing into smaller domains. We will
look at these costs inmore detail in Section 7.3 aswe examineweak
scaling of our approach and overall runtimes of the problems.

Fig. 10(c) details the runtime parameters (number and size of
spherical voids) for each problem shown in Figs. 10(a) and 10(b).
It also shows the number of remaining atoms and initial load
imbalance as well as the number of interactions each problem
computes in the initial timestep. We also list the resulting load
imbalance for each granularity of overdecomposition.

Our ability to vary the initial load imbalance allows us to evalu-
ate how well a load balance method can correct the imbalance for
a given overdecomposition granularity.

7.2. Input to load balance algorithm

We explored two different variants of a load balancing algo-
rithm. One variant uses atom counts, and the other uses interaction

counts to estimate the amount of work in a domain. We evaluated
the two variants using the load imbalance scenarios introduced in
Fig. 10. Figs. 11 and 12 show our results for CoMD using Lennard–
Jones and EAM potentials respectively. We measured the actual
load imbalance (measured imbalance), the imbalance in atoms per
domain, and the imbalance in interaction count per domain.

Fig. 11(a) depicts the initial load imbalancewithout overdecom-
position for Lennard–Jones potential. We show three metrics: (1)
the actual load imbalance (measured imbalance), (2) the imbalance
in atoms per domain, and (3) the imbalance in interaction count
per domain. All three metrics indicate similar load imbalance,
suggesting that itwould be reasonable to load balance either atoms
or particle interactions. Fig. 11(b) shows the imbalance metrics for
Lennard–Jones potential when we use an 8x overdecomposition
and apply the two variants of the load balancing algorithm (atom-
based and interaction-based). The actual load imbalance did not
differ significantly between the two load balancing techniques.
However, both atom imbalance and imbalance in number of inter-
actions metrics slightly exaggerate the load imbalance. Figs. 11(c)
and 11(d) show the imbalance metrics for 64x and 512x overde-
composition. In all scenarios, both load balancing techniques per-
form similarly. These figures also indicate that the additional flexi-
bility gained through higher overdecomposition does not result in
better load balance.

Fig. 12(a) shows the initial load imbalance for computing the
EAM potential. All the three metrics indicate similar load im-
balance. Figs. 12(b)–12(d) show the results using 8x, 64x, and
512x overdecomposition. The actual load imbalance did not differ
significantly between the two load balancing techniques. As with
Lennard–Jones potential, higher overdecomposition does not im-
prove our ability to correct load imbalance. At this scale, creating
8 domains per process is sufficient to load balance the problem in
CoMD.
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(a) Before load balancing. (b) 8x overdecomposition.

(c) 64x overdecomposition. (d) 512x overdecomposition.

Fig. 11. Load imbalance for the LJ potential (64 processes, 23M atoms initially).

Overall, our work verifies that for the CoMD proxy application,
the atom count and the interaction count are both reasonable
approximations of the actual load imbalance in the application.We
use these accurate load imbalance estimates as input to our load
imbalance algorithms, and see effective load imbalance correction
as a result.

7.3. Weak scaling

To evaluate the impact of scale on the performance and accu-
racy of a load balance algorithm, we performed a weak scaling
study. For these experiments, we use Problem 5 in Fig. 10(c). This
problem has 4 spherical voids with a radius of 52.4 Angstroms per
process, and an initial imbalance of 50%. We weak scale Problem
5 from 64 to 4,096 processes by proportionally increasing the
simulated space and keeping the size and the number of spherical
voids per processor the same.

Fig. 13 demonstrates the impact of load imbalance and load
balancing costs on the total runtime of the simulation when weak
scaling the problem. We ran each problem for 160 timesteps, and
rebalanced in the third timestep (once per run). Figs. 14 and 15
provide detailed parameters and statistics for Fig. 13. Fig. 14 lists
the number of atoms, interactions, and initial imbalance at each
scale. Load imbalance goes up slightly at higher scales because
differences in process loads become more pronounced at scale.

Fig. 13(a) illustrates the ability of our load balance algorithm to
load balance the problem; we show the load imbalance right after
rebalancing when using 8x, 64x, and 512x overdecomposition.
Fig. 15 details the load imbalance after the rebalancing. For all three
granularities of overdecomposition, the load balance algorithm is
successful at reassigningwork in amore balancedmanner. Because

the difficulty of load balancing increases with scale even in the
weak scaling case, we see that the post-rebalancing imbalance is
higher at higher scale. While the results are similar for all three
levels of overdecomposition, 512x overdecomposition is slightly
better due to more flexibility in work assignment. However since
512x overdecomposition dealswith fine-grained data, it usesmore
memory for bookkeeping and runs out of memory on 4,096 pro-
cesses when using our sequential load balance algorithm.

Fig. 13(b) shows the runtime of our load balance algorithm. Be-
cause we only have a sequential algorithm in place at the moment
and need to gather/scatter its input/output, its execution time
grows as the problem is weak scaled. The execution time grows
much faster with scale for finer granularity of overdecomposition
because the number of domains in the problem is the input size to
the load balance algorithm.

Fig. 13(c) shows the time for redistributing the domains in the
simulation after the load balance algorithm determines the new
domain assignments. The higher the overdecomposition, the more
domains there are in the problem, and therefore the longer it takes
to redistribute the simulation.

Fig. 13(d) shows the total runtime of the simulation over 160
timesteps. Fig. 15 details the total runtime without load balancing,
andwith load balancing for each granularity. Problems runwithout
load balancing take the longest to finish. Problems run with 8x
overdecomposition plus load balancing are the fastest especially
at higher scale.

Because we only have a sequential load balance algorithm that
requires reduction of all necessary data to a single process, 512x
overdecomposition used too much memory and resulted in a slow
execution time of the load balance algorithm, outweighing the
benefits of achieving lower imbalance.
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(a) Before load balancing. (b) 8x overdecomposition.

(c) 64x overdecomposition. (d) 512x overdecomposition.

Fig. 12. Load imbalance for the EAM potential (64 processes, 23M atoms initially).

Our proxy application allowed us to study performance, ac-
curacy, and associated cost of a load balance algorithm for an
increasing number of processes.

7.4. Dynamic imbalance

To allow dynamic work changes and to study their effect on
the ability to load balance the simulation, we experiment with
our control mechanism of adjusting a center of mass velocity for
the atoms. For these experiments we compare Problems 5 and 9
in Fig. 10(c) on 64 processes. Problem 5 has 4 spherical voids
with the radius of 52.4 Angstroms per process; it has 13,431,088
atoms and computes 283,106,849 atom-pair force interactions,
and 50% initial imbalance. Problem 9 has 10 spherical voids with
the radius of 52.4 Angstroms per process; it has 5,727,095 atoms
and computes 115,381,879 atom-pair force interactions, and 100%
initial imbalance. In addition to beingmore imbalanced, Problem 9
performs significantly less computation than Problem 5. For both
problems, we use three granularities of overdecomposition, and
run the load balance algorithm at even intervals with different
frequencies.

Fig. 16 shows the effect of dynamic imbalance. We ran all prob-
lems for 160 timesteps. We show three center of mass velocities:
0.1%, 0.5%, and 1%, where 1% velocity means each timestep the
atoms were shifted by 1% of the length of the simulation space
in one dimension of the problem. The change in the imbalance is
small when the atoms are shifted slowly, and a faster shift of atoms
results in a larger variation in imbalance. The imbalance can both
decrease and increase because the atoms in the problem will shift
from one process to the next, changing the amount of computation
each process performs. For Problem5, the variation in imbalance as

the atoms shift is not large, because each process does a significant
amount of work even as the atoms shift, as shown in Fig. 16(a).
For Problem 9, the variation in imbalance is larger, because there
are fewer atoms overall and the impact of them shifting to other
processes is greater, as shown in Fig. 16(b).

While it is possible to trigger rebalancing based on a heuristic
or a model which determines when load balancing would be ben-
eficial, in this work we only explore load balancing with a certain
static frequency. We define frequency of rebalancing as the num-
ber of times the problemwas rebalanced during the execution, so a
frequency of 2x means the problem was rebalanced twice, namely
at timestep 1 and timestep 81. Figs. 17 and 18 show the total run-
times for Problems 5 and 9, and how imbalance in Problems 5 and 9
evolves when they are rebalanced with different frequency. We
ran the problems for 160 timesteps. We show rebalancing at equal
intervals with different frequencies that result in the best runtime
(as demonstrated in Fig. 17(a)) for 0.1%, 0.5%, and 1.0% velocities.
We show the runtimes for different center of mass velocities, and
different frequencies of rebalancing. Minimizing the total runtime
requires appropriately evaluating the tradeoffs between the costs
and benefit of rebalancing with different frequency; we intend to
use our version of CoMD for developing and evaluating models
which handle the trade off for different imbalance scenarios and
rebalancing costs.

Fig. 17(a) shows the total runtimes for Problem 5. Fig. 17(b)
shows that load imbalance increases slowly when center of mass
velocity is 0.1%, and Fig. 17(a) confirms that load balancing twice
results in the lowest execution time (64x overdecomposition).
The imbalance increases faster when the shift velocity is 0.5%, as
shown in Fig. 17(c), so load balancing 8 times results in the lowest
execution time (8x overdecomposition). Load imbalance increases
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(a) Imbalance after load balancing. (b) Runtime of the load balance algorithm.

(c) Redistribution time. (d) Total simulation runtime.

Fig. 13. Impact of load imbalance and rebalancing costs on total runtime (weak scaling)

most dramatically when the atoms are shifted with velocity of
1.0%, as shown in Fig. 17(d), necessitating rebalancing 14 times (8x
overdecomposition).

Fig. 18(a) shows the total runtimes for Problem 9. Fig. 18(b)
shows that load imbalance increases slowly when shift velocity is
0.1%, and load balancing twice results in the lowest execution time
(8x overdecomposition). The imbalance increases faster when the
shift velocity is 0.5%, as shown in Fig. 18(c), so load balancing 4
times results in the lowest execution time (8x overdecomposition).
For this instance of the problem (0.5% velocity), the state of the
application at step 80 is such that the load balance algorithm does
not improve the imbalance; in fact, load imbalance increases; we
are still investigating why this happens. Load imbalance increases
most dramatically when the atoms are shifted with velocity of
1.0%, as shown in Fig. 18(d), requiring rebalancing 8 times for the
best runtime (8x overdecomposition). Similarly to the 0.5% velocity
case, for 1.0% velocity case, there are points in the problem when
rebalancing increases the load imbalance (i.e., at timestep 40); we
are still investigating the causes. Because there is less work per
process in Problem 9 as compared to Problem 5, higher imbalance
can be tolerated and fewer rebalancing steps can be amortized over
the duration of the problem.

Table 2 shows details for the lowest runtimes in each ve-
locity/frequency category. As velocity increases, the benefit of
increasing the rate of rebalancing can outweigh the rebalancing
cost, resulting in overall improvement in total runtime of the
simulation.

Our ability to shift atoms in the simulation over time allows
us to study how dynamic work changes effect our ability to load
balance the simulation for a given overdecomposition granularity.

Fig. 14. Detailed parameters for Fig. 13.

Table 2
Details for Best Case Execution for Different Velocities.

Problem Velocity

0.1% 0.5% 1.0%

Problem 5 (50%)
Overdecomp. 64x 8x 8x
LB Frequency 2x 8x 14x
Time (s) 281.1 286.8 296.9

Problem 9 (100%)
Overdecomp. 8x 8x 8x
LB Frequency 2x 4x 8x
Time (s) 169.4 199.16 202.1

8. Conclusions

We extended an ExMatEx proxy application, CoMD, to be a
suitable testbed for assessing the ability of load balance algorithms
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Fig. 15. Detailed statistics for Fig. 13.

(a) Problem 5 (13 M atoms, 283 M interactions, 64 pro-
cesses, 50% initial imbalance)

(b) Problem 9 (5.7 M atoms, 115 M interactions, 64 pro-
cesses, 100% initial imbalance)

Fig. 16. Effect of velocity with which the atom shift on load imbalance.

(a) Total runtime for different velocity, frequency of load balancing, and overdecomposition.

(b) 0.1% velocity. (c) 0.5% velocity. (d) 1.0% velocity.

Fig. 17. Effect of frequency of rebalancing on load imbalance and simulation runtime. Problem 5 (13 M atoms, 283 M interactions, 64 processes, 50% initial imbalance).
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(a) Total runtime for different velocity, frequency of load balancing, and overdecomposition.

(b) 0.1% velocity. (c) 0.5% velocity. (d) 1.0% velocity.

Fig. 18. Effect of frequency of rebalancing on load imbalance and simulation runtime. Problem 9 (5.7 M atoms, 115 M interactions, 64 processes, 100% initial imbalance).

to correct dynamic load imbalance. We designed a methodology
to parameterize three key aspects necessary for studying load
imbalance correction: the granularity with which work can be
migrated, the initial load imbalance, and how quickly the imbal-
ance changes throughout the simulation. We presented a study
demonstrating our ability to use our modified version of CoMD
to evaluate the effectiveness of a load balance algorithm and the
associated rebalancing costs for awide range of initial and dynamic
load imbalance scenarios.
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